
Defining Patterns Using UML Profiles

N. C. Debnath
Winona State University

Department of Computer Science
Winona, MN 55987 USA
ndebnath@winona.edu

A. Garis, D. Riesco, G. Montejano

Universidad Nacional de San Luis
Ejército de los Andes 950
5700 San Luis – Argentina

{agaris | driesco | gmonte}@unsl.edu.ar

Abstract

Sometimes, UML is not enough expressive to

describe patterns property. UML profiles allow extending
UML syntax and semantic for modeling elements of
particular domains. As profiles extend UML vocabulary,
and design patterns define for designers a common
vocabulary, so it is possible using profile for defining a
pattern vocabulary in UML. Profiles can be used for
solve particular problems in different domains.

This work shows the way for defining design
patterns with profile, proposing architecture in levels. It
shows how the definition of a profile for a particular
pattern is, and how an UML tool can be enough for
introduce profile for patterns. It analyzes the advantages
of using profiles to define, document, and visualize design
patterns.

1. Introduction

Nowadays, UML (Unified Modeling Language)
is one of the most used modeling languages for the design
of system 0. Many times UML is not enough expressive
for modeling specific elements of particular domain. In
these situations is necessary to extend UML. Profiles are
introduced in UML to extend its syntax and semantic;
then it is possible to represent more specifics concepts [2].
One of the reasons for defining profiles is that they add
information to the model to transform it to other models
or to code. On the other hand, it increases the vocabulary
of a specific domain, and it extends semantic and
constrains of the UML metamodel.
 Many software developers use UML to model
design patterns in their solutions. A pattern expresses the
experience of expert designers. They help to transfer
knowledge between developers, give them a common
vocabulary and document software [3].

This work shows the way for defining patterns
with profiles, defining a profile for each pattern. As
profiles extend UML vocabulary and patterns define for

designers a common vocabulary, so it is possible using
profile for defining a pattern vocabulary in UML. Profile
for patterns can be used not only to specify particular
domain but it can be used for solve particular problems in
different domains (using profile for patterns transversally
on dissimilar domains).

In the following section, UML profiles are
introduced. Later approaches for the specification of
design pattern and tools to support profile for patterns are
presented. Afterward the way for defining pattern profiles
is described. Finally, the conclusions are showed.

2. UML profiles

The profiles idea is described in [13] (Chapter 4,

Terms and definitions): “A stereotyped package that
contains model elements that have been customized for a
specific domain or purpose using extension mechanisms,
such as stereotypes, tagged definitions and constraints. A
profile may also specify model libraries on which it
depends and the metamodel subset that it extends.”
 For extending and adapting UML to a platform
or domain, standard UML define a package “Profile”.
This package includes three mechanisms for refining:
stereotypes, tag values and constrains. These elements
allow adapting the UML semantic to particular
requirements, without changing the UML metamodel.
 Stereotypes extend the UML vocabulary and it is
possible to associate to it tag values and constrains. Tag
values are attributes associated to elements extended by
the profile. Constrains are semantic restrictions added to
elements of the model. Many times natural language is
used for define constrains however Object Constraint
Language (OCL) is a best option because it is most
precise.

One of reasons for defining profiles is that it
allows defining a new vocabulary for a specific domain,
defining a particular notation for existent elements in
accordance with these domain, adding semantic for
metamodel elements what have an imprecise semantic,
adding new semantic to metamodel and adding constrains

to existent metamodel elements [13]. These advantages
can be used for MDA (Model Driven Architecture) which
approaches the software development by definition and
transformation of models [14].

3. Other approaches

There are different ways for describe patterns, a

formal approach and other more informal. The formal
specification is the best way to achieve a precise notation
in accordance with [4], [5], [6], [7]; however, can be
sophisticate and difficult understand. In [6] and [7],
mathematics background is required to comprehend the
specification. Smith and Stotts in [6] show how the
language termed ρ-calculus can express design patterns.
Flores in [7] proposes a formal specification of pattern
using a formal language (RSL).

Numerous works have studied the use of UML to
define and document patterns. For example,. Le Guennec,
Sunyé and Jézéquel in [5] modificate the UML 1.3
metamodel. They allow meta-level collaborations and
OCL constraints instead of parameterized collaborations.
The OMG in [12] introduce notions for defining patterns
and for applying patterns to models. Fontoura and Lucena
in [8] extend UML for representing a class of design
pattern called “configuration patterns”. France, Kim and
Song in [11]. define a metamodeling language for
specifying different perspectives of design patterns.

Some works as [9] and [10] are less oriented to
specification of patterns for documentation but they show
other important features. Sanada and Adams in [9] extend
UML for supporting design patterns in design class
diagrams. Dong and Yang in [10] present a UML profile
for a best visualization of design pattern in UML
diagrams.

Such as, it is observed in [11] and [4], if the
pattern specification is precise then pattern-based
development techniques and supporting tools can be used
for verification of the presence of pattern in design
models, building of solutions from patterns, incorporation
of pattern into design model, and generation of new
models and code from patterns.

4. Tool to support profile for patterns

An appropriate CASE tool must allow define and

incorporate profiles in the models. After a definition of a
profile for a pattern and its incorporation in the repository,
the instantiation of predefined patterns to design elements
in a particular model it is necessary. The UML tool
should get the possibility of the definition of stereotypes,
tag values and OCL constrains; later allow to incorporate
them into a model and to verify that these model’s
elements are in accordance with the OCL constrains.

A form to define profile for patterns is to choose
a CASE tool (see [16]) that offer the opportunity of
introduce new stereotypes and tags in the metamodel and
incorporate them in the models. The tool must have a way
for exporting models to documents written in a standard
specification (as XMI [17]), therefore the resulting file
can be analyzed in order for checking if the model is
consistent with respect to the profile constrains.

Instead of implementing a delay consistency
check, in [15] a different approach is showed. The
incorrect use of the profile is prevented extending a
CASE tool with a set of profile operations. These
operations are the interface for using elements of a profile
and for ensuring the consistency of its use. Also it is
possible automatically compute derived stereotypes and
tags. The operations have associated constraints, which
are checked in the moment of the operation execution.
With this strategy, the CASE tool must allow the
definition of stereotypes and tags, and provides scripting
facilities for implementing the profiles operations.

5. Defining pattern profiles

Profiles give a general structure for defining

patterns. However, it isn’t possible to define a semantic
for all patterns in a single profile, it is necessary to do a
profile for each pattern; in each profile the semantic of a
particular pattern is described.

This work proposes architecture for patterns
using UML profiles, showing that the definition of a
profile for each pattern is an option for doing the
specification of design patterns. The architecture
proposed is structured in levels; a hierarchy between
levels of profiles (see Figure 1) is imposed allowing the
reuse of definitions. In the bottom level is the “Profile
Package” of OMG standard, following with a “Design
Pattern Framework Profile” (DPFP), a level of class of
pattern and finally, on the top, the definition of particular
patterns.

DPFP has common specification features to all
pattern profiles. This framework will add particular
elements for pattern; also the redefinition of profile
elements (stereotypes, tag values and constrains)
necessary for attaching a semantic specific of patterns.

The level of class of pattern is inspired in one of
the most popular catalogs of design pattern ([3]), where
the patterns are divided in Creational, Structural and
Behavioural. They reuse definitions of DPFP, but each
class of pattern add a particular semantic in it definition.
Finally, when a new pattern want be included then a new
profile is defined; each profile of added patterns will have
a particular semantic, but all patterns will respect the
same generic structure of some of class of pattern.

One of the advantages for using UML profiles

for patterns is that if UML tools know profiles features, it
is not necessary define a specific tool for patterns. This
feature is an important advantage in relation with others
approaches.

This work is some different to [5] because not
use the traditional approach proposed for UML as is the
collaboration model and templates. Also it differs of [9]
and [10] since it not defines a profile for each pattern.
Both are more oriented to easy visualization of pattern
when they are applied in UML models. Neither is same to
[8] and [11] because it is not introducing a new notation
(only use an UML artefact: the profile). Therefore, a
profile is used not only to define specific domain but it is
used to define a general domain too, as it is the definition
of patterns.

5.1 A Case Study

 Suppose that the composite pattern [3] is used in
a design problem. Different elements should be draw at
the screen, therefore an abstract method “draw()” is
defined in the Graphic class and it is implemented by all
its subclasses. The “Picture” class is a composite of
graphics, then for drawing it should send the message
“draw” to all its “Children”. We can see that “Picture”
class is working as composite, “Graphic” as component;
and the “Line” and “Rectangle” classes as leaf
components.

Consider that the developer wants to visualize in
the design the pattern that it is been used to communicate
knowledge with other developers, to give them a common
vocabulary, and to have more clear documentation of the
system design. Having UML elements for this last
propose will help for identifying the pattern used.

Before adding stereotypes in the design diagram,
it is necessary to specify a profile for the composite
pattern (see Figure 2). This profile defines three class
stereotypes (Component, LeafComponent and Composite)
and one association stereotype (Children).

In this case, tag values are not defined but

constrains are established using OCL. As example, some
constrains of the Composite Profile appear in Figure 3.

After adding constrains on UML metamodel

elements, it is possible to check this constrains on model
elements that use stereotypes of the profile. Therefore, the
model is correct according the syntactic and semantic
rules that the profile has established.

We propose a way for doing the verification of
OCL constrains with a UML tool (see section 4). It is
combining a delay consistency check (off line check) and
the check of incorrect use of the profile (on line check).
Features in the DPFP are defined in order for combination

Figure 1: Architecture for patterns using UML profiles

Figure 2: Composite Profile

 Children:(Core::Association)
 inv:
 self.connection->exists
 (participant.isSterotyped(“Composite”) and
 multiplicity.min=1 and
 multiplicity.max=1) and
 self.connection->forAll(c1,c2|
 c1.participant.isSterotyped(“Composite”) and
 c2.participant.isSterotyped(“Component”)
 implies c1.aggregation=#composite and
 c2.aggregation=#none)

 inv:
 Class.allInstances->forAll(c1,c2|
 c1.isSterotyped(“Composite”) and
 c2.isSterotyped(“Component”) and
 c1.oclType.superTypes->includes(c2.oclType)
 implies
 Class.allInstances->exists(c3|
 c3.isSterotyped(“LeafComponent”) and
 c3.oclType.superTypes->includes(c2.oclType)))

Figure 3: Constrains of Composite Profile

of an off and on line checking. In particular, OCL
constrains can add a specific semantic that indicate if it
can be checked within on-line way or off-line way.

The pattern UML profile should be enough
general to describe the essential spirit of the pattern. If the
pattern definition is much restricted, the benefit of pattern
using in different situations is loss.

In the same way, it has been defined the
composite profile for the composite pattern, others
profiles can be defined for other patterns. A resumed
technique for defining a pattern profile can be as
following. First, it is necessary to identify the main
participants of the pattern and its responsibilities in order
to have cleared the metamodel to describe. Later, when
the profile is defined, a stereotype is included for each
participant of the pattern. If tag values are required they
can be include in the profile associated to a stereotype.
Finally the rules that impose the pattern behaviour is
represented through constrains in OCL.

Conclusions

The advantages of defining profiles for particular

domains are many; such as to add information to the
model to transform it to other models, and to extend
semantic of the UML metamodel. If a profile is used for a
design pattern, all these advantages are gained. Although
profiles were often used for defining specific domains, we
show that they can be used for general domains as the
pattern definition is. For other way, if profiles are used to
represent patterns then it is not necessary to define a
special notation.

This work proposes architecture structured in
levels for defining design patterns with profiles. A
hierarchy between levels of profiles is imposed allowing
the reuse of definitions. The profile is used as a tool to
document and define design patterns. Developers can
introduce stereotypes, tag values and OCL constrains in
their models. This allows them to see clearly the pattern
that they used, to improve communication with their
colleagues and to establish a common vocabulary.
 In addition, it analyzes how a UML CASE tool
should define, incorporate profiles in the models and how
it should check if the model is consistent with respect to
the profile constrains. Finally it proposes that OCL
constrains can add in DPFP a particular semantic
indicating if it can be checked within on-line way or off-
line way.

References

[1] ISO/IEC. Unified Modeling Language (UML),

Version 1.5, International Standard ISO/IEC 19501.
[2] L. Fuentes, A. Vallecillo, “Una Introducción a los

Perfiles UML”, Novática, 2004, vol.168, pp. 6-11.
[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides,

Design Patterns. Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

[4] G. Florijn, M. Meijers, P. Van Winsen, “Tool
Support for Object-Oriented Patterns”, In
ECOOP’97, 11th European Conference on Object-
Oriented Programming, 1997, vol. 1241 LNCS, pp.
472-495.

[5] A. Le Guennec, G. Sunyé, J. Jézéquel, “Precise
Modeling of Design Patterns”, In UML 2000, 2000,
vol. 1939 LNCS, pp. 482-496.

[6] J. Smith, D. Stotts, “Elemental Design Patterns: A
Formal Semantics for Composition of OO Software
Architecture”. In 27th Annual IEEE/NASA Software
Engineering Workshop, 2002.

[7] A. Flores, “Soporte Formal para Diseño basado en
Patrones y Formalización de Patrones Estructurales
Gof”, Tesis de Magíster en Ciencias de la
Computación, 2004.

[8] M. Fontoura, C. Lucena, “Extending UML to
Improve the Representation of Design Patterns”,
Journal of Object Technology, 2000.

[9] Y. Sanada, R. Adams, “Representing Design
Patterns and Frameworks in UML. Towards a
Comprehensive Approach”, Journal of Object
Technology, 2002, vol.1(2), pp.143–154.

[10] J. Dong, S. Yang, “Visualizing Design Patterns
With A UML Profile”, IEEE Symposium on Human
Centric Computing Languages and Environments
(HCC 2003), 2003, pp.123-125.

[11] R. France, D. Kim, E. Song, “A UML-Based Pattern
Specification Technique”, IEEE Transactions on
Software Engineering, 2004, vol.30(3), pp.193-206.

[12] OMG.“UML Profile for Patterns Specification”,
http://www.omg.org/technology/ documents, 2004.

[13] UML Superstructure 2.0 Draft Adpted
Specification, http://www.omg.org/technology/
documents, 2004.

[14] Object Management Group, MDA Guide Version
1.0.1. OMG document,
http://www.omg.org/docs/omg, 2004.

[15] J. Cabot, C. Gómez, “A simple yet useful approach
to implementing UML Profiles in current CASE
tools”, Workshop in Software Model Engineering,
2003.

[16] M. Jeckle, “UML Tools (Case & Drawing)”,
http://www.jeckle.de/umltools.htm

[17] “OMG-XML- Metadata Interchange Specification”,
Version 1.2, http://www.omg.org, 2002.

