Señales y Sistemas - Práctico N^0 3 - A (2024) Serie de Fourier continua:

Problema \mathbb{N}^o 1. Determine el espectro (coeficientes espectrales) de:

- a) un pulso rectangular periódico definido por p(t) = 1 en |t| < 1/2, siendo el periodo T = 3/2.
- b) un pulso periódico (periodo T=20) definido por p(t)=1 si 0 < t < 10 y p(t)=-1 si -10 < t < 0. Verifique el resultado y realice la gráfica de los coeficientes espectrales utilizando «Fourier Series Demo» de Matlab.
- c) la señal rampa periódica definida por x(t) = t/8 para -8 < t < 8, siendo el periodo T = 16. Verifique el resultado y realice la gráfica de los coeficientes espectrales utilizando «Fourier Series Demo» de Matlab.

Problema Nº 2. Utilice «Fourier Series Demo» de Matlab para analizar las series de las señales coseno y seno rectificadas en onda completa y en media onda, en todos los casos considere que el periodo de la señal es T=15.

Problema N^o 3. Una señal periódica continua x(t) es real y posee coeficientes espectrales no nulos para k = 1, -1, 3 y -3. Siendo $a_1 = 2$, $a_3 = 4j$, determine la serie de Fourier de la señal en su forma de expansión en exponenciales complejas y en su forma trigonométrica.

Problema \mathbb{N}^o 4. Encuentre la expresion de la serie de Fourier para un tren de impulsos periódico de periodo T_0 . Represente el espectro de la señal.

Problema N^o 5. Determine la representación en serie de Fourier de la señal periódica, de periodo T=2, definida en un período por $x(t)=\delta(t)-2\delta(t-1)$.

Problema \mathbb{N}^o 6. Encuentre y realice un esquema de la Función Respuesta en Frecuencia de los siguientes sistemas:

- a) Un circuito RC serie en donde y(t) es la tensión en el capacitor y x(t) es la tensión en la fuente.
- b) Sistema descripto por $h(t) = 2e^{-3t}u(t)$.
- c) Sistema promediador continuo causal, con intervalo de promediación T=2 s.

Problema Nº 7. Utilizando métodos en el dominio de la frecuencia, encuentre la salida del sistema LTI cuya respuesta al impulso es $h(t) = 2 e^{-3t} u(t)$, a una señal periódica real de periodo T = 2 s. y de coeficientes espectrales $a_0 = 1$, $a_1 = 1/4$, $a_2 = 1/2$ y $a_k = 0$ para k > 2.

Problema N^o 8. Considere el sistema LTI cuya Respuesta en Frecuencia es

$$H(j\omega) = \frac{1}{2 + j\omega}$$

Represente con Matlab la Respuesta en Frecuencia. Utilizando métodos del dominio de la frecuencia, encuentre la respuesta de este sistema a la señal $x(t) = 3cos(5\pi t + \pi/4) + 2sen(8\pi t)$.

Problema \mathbb{N}^o 9. Considere el sistema LTI cuya Respuesta en Frecuencia es

$$H(j\omega) = \begin{cases} 1 & |\omega| < 3 \\ 0 & |\omega| > 3 \end{cases}$$

Represente la Respuesta en Frecuencia. Utilizando métodos del dominio de la frecuencia, encuentre la respuesta de este sistema a la señal x(t) = cos(2t) + sen(4t).

Problema N o 10. Encuentre la expresión general de la salida de un sistema con respuesta al impulso real a una señal cosenoidal y a una señal senoidal.