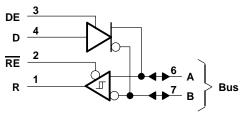

SLLS101A - JULY 1985 - REVISED MAY 1995

- Bidirectional Transceivers
- Meet or Exceed the Requirements of ANSI Standards EIA/TIA-422-B and RS-485 and ITU Recommendations V.11 and X.27
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- 3-State Driver and Receiver Outputs
- Individual Driver and Receiver Enables
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Driver Output Capability . . . ±60 mA Max
- Thermal Shutdown Protection
- Driver Positive and Negative Current Limiting
- Receiver Input Impedance . . . 12 k $\Omega$  Min
- Receiver Input Sensitivity ... ±200 mV
- Receiver Input Hysteresis . . . 50 mV Typ
- Operate From Single 5-V Supply

#### description

The SN65176B and SN75176B differential bus transceivers are monolithic integrated circuits designed for bidirectional data communication on multipoint bus transmission lines. They are designed for balanced transmission lines and meet ANSI Standards EIA/TIA-422-B and RS-485 and ITU Recommendations V.11 and X.27.




#### logic symbol<sup>†</sup>



<sup>†</sup> This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

#### logic diagram (positive logic)



The SN65176B and SN75176B combine a 3-state differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, that can be externally connected together to function as a direction control. The driver differential outputs and the receiver differential inputs are connected internally to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or  $V_{CC} = 0$ . These ports feature wide positive and negative common-mode voltage ranges making the device suitable for party-line applications.

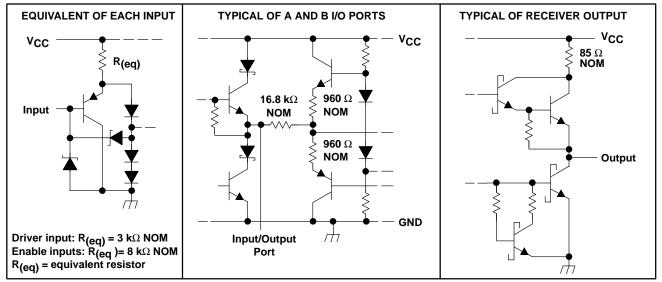
| DRIVER |        |     |      |  |  |  |  |
|--------|--------|-----|------|--|--|--|--|
| INPUT  | ENABLE | OUT | PUTS |  |  |  |  |
| D      | DE     | Α   | В    |  |  |  |  |
| Н      | Н      | Н   | L    |  |  |  |  |
| L      | н      | L   | Н    |  |  |  |  |
| Х      | L      | Z   | Z    |  |  |  |  |

#### **Function Tables**

RECEIVER

| DIFFERENTIAL INPUTS<br>A – B     | ENABLE<br>RE | OUTPUT<br>R |
|----------------------------------|--------------|-------------|
| V <sub>ID</sub> ≥ 0.2 V          | L            | Н           |
| –0.2 V < V <sub>ID</sub> < 0.2 V | L            | ?           |
| $V_{ID} \leq -0.2 V$             | L            | L           |
| X                                | Н            | Z           |
| Open                             | L            | Н           |

H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)


SLLS101A - JULY 1985 - REVISED MAY 1995

#### description (continued)

The driver is designed for up to 60 mA of sink or source current. The driver features positive- and negative-current limiting and thermal shutdown for protection from line-fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 150°C. The receiver features a minimum input impedance of 12 k $\Omega$ , an input sensitivity of ±200 mV, and a typical input hysteresis of 50 mV.

The SN65176B and SN75176B can be used in transmission line applications employing the SN75172 and SN75174 quadruple differential line drivers and SN75173 and SN75175 quadruple differential line receivers.

The SN65176B is characterized for operation from  $-40^{\circ}$ C to  $105^{\circ}$ C and the SN75176B is characterized for operation from  $0^{\circ}$ C to  $70^{\circ}$ C.



## schematics of inputs and outputs



SLLS101A - JULY 1985 - REVISED MAY 1995

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)<sup>†</sup>

| Supply voltage, V <sub>CC</sub> (see Note 1)  |                              |
|-----------------------------------------------|------------------------------|
| Voltage range at any bus terminal             |                              |
| Enable input voltage, V <sub>1</sub>          | 5.5 V                        |
| Continuous total power dissipation            | See Dissipation Rating Table |
| Operating free-air temperature range, TA: SN6 | 65176B –40°C to 105°C        |
| SN7                                           | 75176B 0°C to 70°C           |
| Storage temperature range, T <sub>stg</sub>   | – 65°C to 150°C              |
| Lead temperature 1,6 mm (1/16 inch) from case | e for 10 seconds 260°C       |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential input/output bus voltage, are with respect to network ground terminal.

|         | DISSIPATION RATING TABLE              |                                                |                                       |                                        |  |  |  |  |
|---------|---------------------------------------|------------------------------------------------|---------------------------------------|----------------------------------------|--|--|--|--|
| PACKAGE | T <sub>A</sub> ≤ 25°C<br>POWER RATING | DERATING FACTOR<br>ABOVE T <sub>A</sub> = 25°C | T <sub>A</sub> = 70°C<br>POWER RATING | T <sub>A</sub> = 105°C<br>POWER RATING |  |  |  |  |
| D       | 725 mW                                | 5.8 mW/°C                                      | 464 mW                                | 261 mW                                 |  |  |  |  |
| Р       | 1100 mW                               | 8.8 mW/°C                                      | 704 mW                                | 396 mW                                 |  |  |  |  |

#### recommended operating conditions

|                                                                   |               | MIN  | TYP | MAX  | UNIT |
|-------------------------------------------------------------------|---------------|------|-----|------|------|
| Supply voltage, V <sub>CC</sub>                                   |               | 4.75 | 5   | 5.25 | V    |
| bltage at any bus terminal (separately or common mode), VI or VIC |               |      |     | 12   | v    |
| voltage at any bus terminal (separately of                        |               |      |     | -7   | v    |
| High-level input voltage, V <sub>IH</sub>                         | D, DE, and RE | 2    |     |      | V    |
| Low-level input voltage, VIL                                      | D, DE, and RE |      |     | 0.8  | V    |
| Differential input voltage, VID (see Note 2)                      |               |      |     | ±12  | V    |
| High-level output current, IOH                                    | Driver        |      |     | -60  | mA   |
|                                                                   | Receiver      |      |     | -400 | μΑ   |
| Low-level output current, IOI                                     | Driver        |      |     | 60   | mA   |
| Low-level output current, IOL                                     | Receiver      |      |     | 8    | ША   |
| Operating free air temperature Te                                 | SN65176B      | -40  |     | 105  | °C   |
| Operating free-air temperature, TA                                | SN75176B      | 0    |     | 70   | C    |

NOTE 2: Differential-input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.



SLLS101A - JULY 1985 - REVISED MAY 1995

## **DRIVER SECTION**

# electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

|                     | PARAMETER                                           | TEST CON                        | DITIONS <sup>†</sup>  | MIN                           | TYP‡ | MAX      | UNIT |
|---------------------|-----------------------------------------------------|---------------------------------|-----------------------|-------------------------------|------|----------|------|
| VIK                 | Input clamp voltage                                 | lı = –18 mA                     |                       |                               |      | -1.5     | V    |
| VO                  | Output voltage                                      | IO = 0                          |                       | 0                             |      | 6        | V    |
| VOD1                | Differential output voltage                         | I <sup>O</sup> = 0              |                       | 1.5                           | 3.6  | 6        | V    |
| IV <sub>OD2</sub> I | Differential output voltage                         | R <sub>L</sub> = 100 Ω,         | See Figure 1          | 1/2 V <sub>OD1</sub><br>or 2¶ |      |          | V    |
|                     |                                                     | R <sub>L</sub> = 54 Ω,          | See Figure 1          | 1.5                           | 2.5  | 5        | V    |
| V <sub>OD3</sub>    | Differential output voltage                         | See Note 4                      |                       | 1.5                           |      | 5        | V    |
| ∆ Vod               | Change in magnitude of differential output voltage§ | R <sub>L</sub> = 54 Ω or 100 Ω, |                       |                               |      | ±0.2     | V    |
| Voc                 | Common-mode output voltage                          |                                 | See Figure 1          |                               |      | +3<br>-1 | V    |
| ∆ V <sub>OC</sub>   | Change in magnitude of common-mode output voltage§  |                                 |                       |                               |      | ±0.2     | V    |
|                     | Output current                                      | Output disabled,                | V <sub>O</sub> = 12 V |                               |      | 1        | mA   |
| ю                   | Ouput current                                       | See Note 3                      | $V_{O} = -7 V$        |                               |      | -0.8     | ША   |
| Ι <sub>ΙΗ</sub>     | High-level input current                            | V <sub>I</sub> = 2.4 V          |                       |                               |      | 20       | μΑ   |
| ۱ <sub>IL</sub>     | Low-level input current                             | V <sub>I</sub> = 0.4 V          |                       |                               |      | -400     | μA   |
|                     |                                                     | $V_{O} = -7 V$                  |                       |                               |      | -250     |      |
|                     | Short-circuit output current                        | $V_{O} = 0$                     |                       |                               |      | 150      | mA   |
| los                 |                                                     | $V_{O} = V_{CC}$                |                       |                               |      | 250      | IIIA |
|                     |                                                     | V <sub>O</sub> = 12 V           |                       |                               |      | 250      |      |
|                     | Supply current (total package)                      | No load                         | Outputs enabled       |                               | 42   | 70       | mA   |
| ICC                 | Supply current (total package)                      | INO IUdu                        | Outputs disabled      |                               | 26   | 35       | IIIA |

<sup>†</sup> The power-off measurement in ANSI Standard EIA/TIA-422-B applies to disabled outputs only and is not applied to combined inputs and outputs. <sup>‡</sup> All typical values are at  $V_{CC}$  = 5 V and  $T_A$  = 25°C.

§ Δ|V<sub>OD</sub>| and Δ|V<sub>OC</sub>| are the changes in magnitude of V<sub>OD</sub> and V<sub>OC</sub>, respectively, that occur when the input is changed from a high level to a low level.

 $\P$  The minimum V\_{OD2} with a 100- $\Omega$  load is either 1/2 V\_{OD1} or 2 V, whichever is greater.

NOTES: 3. See ANSI Standard RS-485 Figure 3.5, Test Termination Measurement 2.

4. This applies for both power on and off; refer to ANSI Standard RS-485 for exact conditions. The EIA/TIA-422-B limit does not apply for a combined driver and receiver terminal.

## switching characteristics, $V_{CC}$ = 5 V, $R_L$ = 110 k $\Omega$ , $T_A$ = 25°C (unless otherwise noted)

|                    | PARAMETER                           |                        | TEST CONDITIONS |  | TYP | MAX | UNIT |
|--------------------|-------------------------------------|------------------------|-----------------|--|-----|-----|------|
| td(OD)             | Differential-output delay time      | R <sub>1</sub> = 54 Ω, | See Figure 3    |  | 15  | 22  | ns   |
| <sup>t</sup> t(OD) | Differential-output transition time | RL = 54 32,            | See Figure 5    |  | 20  | 30  | ns   |
| <sup>t</sup> PZH   | Output enable time to high level    | See Figure 4           |                 |  | 85  | 120 | ns   |
| t <sub>PZL</sub>   | Output enable time to low level     | See Figure 5           |                 |  | 40  | 60  | ns   |
| <sup>t</sup> PHZ   | Output disable time from high level | See Figure 4           |                 |  | 150 | 250 | ns   |
| t <sub>PLZ</sub>   | Output disable time from low level  | See Figure 5           |                 |  | 20  | 30  | ns   |



SLLS101A - JULY 1985 - REVISED MAY 1995

| SYMBOL EQUIVALENTS   |                                         |                                                    |  |  |  |  |
|----------------------|-----------------------------------------|----------------------------------------------------|--|--|--|--|
| DATA SHEET PARAMETER | EIA/TIA-422-B                           | RS-485                                             |  |  |  |  |
| VO                   | V <sub>oa,</sub> V <sub>ob</sub>        | V <sub>oa,</sub> V <sub>ob</sub>                   |  |  |  |  |
| IVOD1                | Vo                                      | Vo                                                 |  |  |  |  |
| VOD2                 | V <sub>t</sub> (R <sub>L</sub> = 100 Ω) | V <sub>t</sub> (R <sub>L</sub> = 54 Ω)             |  |  |  |  |
| Ινοd3Ι               |                                         | V <sub>t</sub> (Test Termination<br>Measurement 2) |  |  |  |  |
| $\Delta  V_{OD} $    | $  V_t  -  \overline{V}_t  $            | $   V_t -  \overline{V}_t   $                      |  |  |  |  |
| V <sub>OC</sub>      | V <sub>OS</sub>                         | V <sub>os</sub>                                    |  |  |  |  |
|                      | $ V_{OS} - \overline{V}_{OS} $          | $ V_{OS} - \overline{V}_{OS} $                     |  |  |  |  |
| IOS                  | I <sub>sa</sub>  ,  I <sub>sb</sub>     |                                                    |  |  |  |  |
| lo                   | I <sub>xa</sub>  ,  I <sub>xb</sub>     | l <sub>ia</sub> , l <sub>ib</sub>                  |  |  |  |  |

#### **RECEIVER SECTION**

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

|                  | PARAMETER                                                      | TEST C                                      | ONDITIONS                  | MIN   | TYP† | MAX  | UNIT       |
|------------------|----------------------------------------------------------------|---------------------------------------------|----------------------------|-------|------|------|------------|
| VIT+             | Positive-going input threshold voltage                         | V <sub>O</sub> = 2.7 V,                     | $I_{O} = -0.4 \text{ mA}$  |       |      | 0.2  | V          |
| $V_{IT-}$        | Negative-going input threshold voltage                         | V <sub>O</sub> = 0.5 V,                     | I <sub>O</sub> = 8 mA      | -0.2‡ |      |      | V          |
| V <sub>hys</sub> | Input hysteresis voltage (V <sub>IT+</sub> -V <sub>IT-</sub> ) |                                             |                            |       | 50   |      | mV         |
| VIK              | Enable Input clamp voltage                                     | lı = – 18 mA                                |                            |       |      | -1.5 | V          |
| VOH              | High-level output voltage                                      | V <sub>ID</sub> = 200 mV,<br>See Figure 2   | I <sub>OH</sub> = -400 μA, | 2.7   |      |      | V          |
| V <sub>OL</sub>  | Low-level output voltage                                       | $V_{ID} = -200 \text{ mV},$<br>See Figure 2 | I <sub>OL</sub> = 8 mA,    |       |      | 0.45 | V          |
| IOZ              | High-impedance-state output current                            | $V_{O} = 0.4 \text{ V to } 2.4 \text{ V}$   |                            |       |      | ±20  | μA         |
| 1.               |                                                                | Other input = 0 V,                          | Vj = 12 V                  |       |      | 1    | mA         |
| 1                | Line input current                                             | See Note 5                                  | $V_{I} = -7 V$             |       |      | -0.8 | ШA         |
| Iн               | High-level enable input current                                | V <sub>IH</sub> = 2.7 V                     |                            |       |      | 20   | μA         |
| ۱ <sub>IL</sub>  | Low-level enable input current                                 | V <sub>IL</sub> = 0.4 V                     |                            |       |      | -100 | μA         |
| rj               | Input resistance                                               | V <sub>I</sub> = 12 V                       |                            | 12    |      |      | kΩ         |
| IOS              | Short-circuit output current                                   |                                             |                            | -15   |      | -85  | mA         |
| 100              | Supply surrent (total poskage)                                 | No load                                     | Outputs enabled            |       | 42   | 55   | <b>m</b> A |
| lcc              | Supply current (total package)                                 | INU IUAU                                    | Outputs disabled           |       | 26   | 35   | mA         |

<sup>†</sup> All typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ .

<sup>‡</sup> The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

NOTE 5: This applies for both power on and power off. Refer to EIA Standard RS-485 for exact conditions.



SLLS101A - JULY 1985 - REVISED MAY 1995

## switching characteristics, V\_{CC} = 5 V, C<sub>L</sub> = 15 pF, T<sub>A</sub> = 25°C

|                  | PARAMETER                                         | TEST CONDITIONS                                        | MIN | TYP | MAX | UNIT |
|------------------|---------------------------------------------------|--------------------------------------------------------|-----|-----|-----|------|
| <sup>t</sup> PLH | Propagation delay time, low- to high-level output | V <sub>ID</sub> = 0 to 3 V, See Figure 6               |     | 21  | 35  | ns   |
| <sup>t</sup> PHL | Propagation delay time, high- to low-level output | $v_{\text{ID}} = 0.03 \text{ v}, \text{ See Figure 6}$ |     | 23  | 35  | ns   |
| <sup>t</sup> PZH | Output enable time to high level                  |                                                        |     | 10  | 20  | ns   |
| <sup>t</sup> PZL | Output enable time to low level                   | See Figure 7                                           |     | 12  | 20  | ns   |
| <sup>t</sup> PHZ | Output disable time from high level               | See Figure 7                                           |     | 20  | 35  | ns   |
| <sup>t</sup> PLZ | Output disable time from low level                | See Figure 7                                           |     | 17  | 25  | ns   |



SLLS101A - JULY 1985 - REVISED MAY 1995

## PARAMETER MEASUREMENT INFORMATION

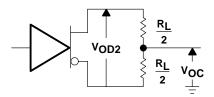
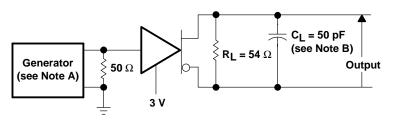




Figure 1. Driver V<sub>OD</sub> and V<sub>OC</sub>



**TEST CIRCUIT** 

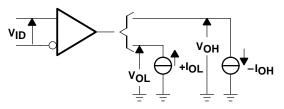
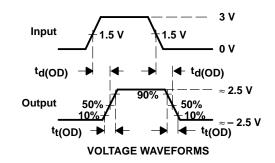
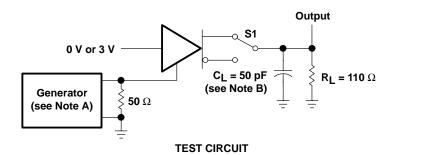
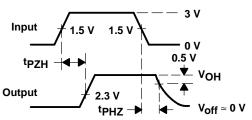
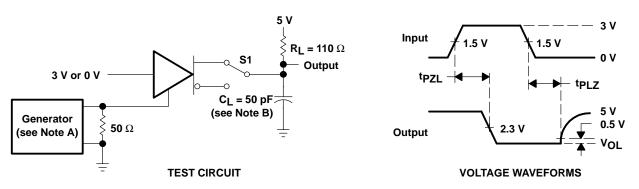






Figure 2. Receiver VOH and VOL




#### Figure 3. Driver Test Circuit and Voltage Waveforms





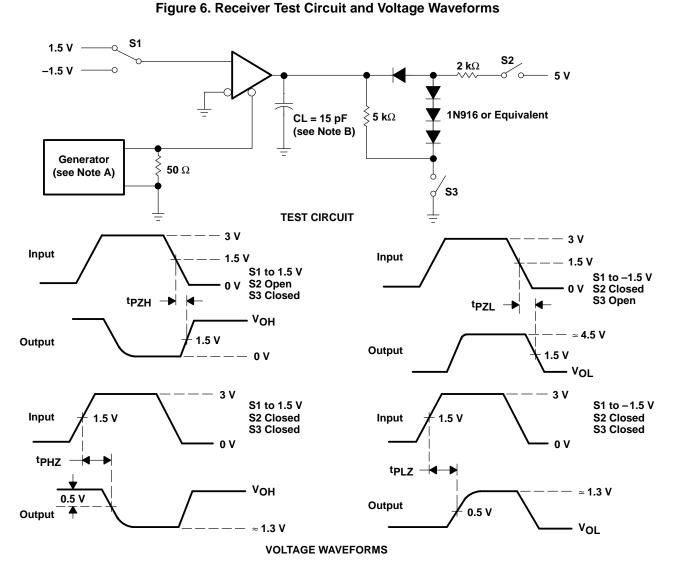
**VOLTAGE WAVEFORMS** 


Figure 4. Driver Test Circuit and Voltage Waveforms





- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR  $\leq$  1 MHz, 50% duty cycle, t<sub>f</sub>  $\leq$  6 ns, t<sub>f</sub>  $\leq$  6 ns, Z<sub>O</sub> = 50  $\Omega$ .
  - B. CL includes probe and jig capacitance.

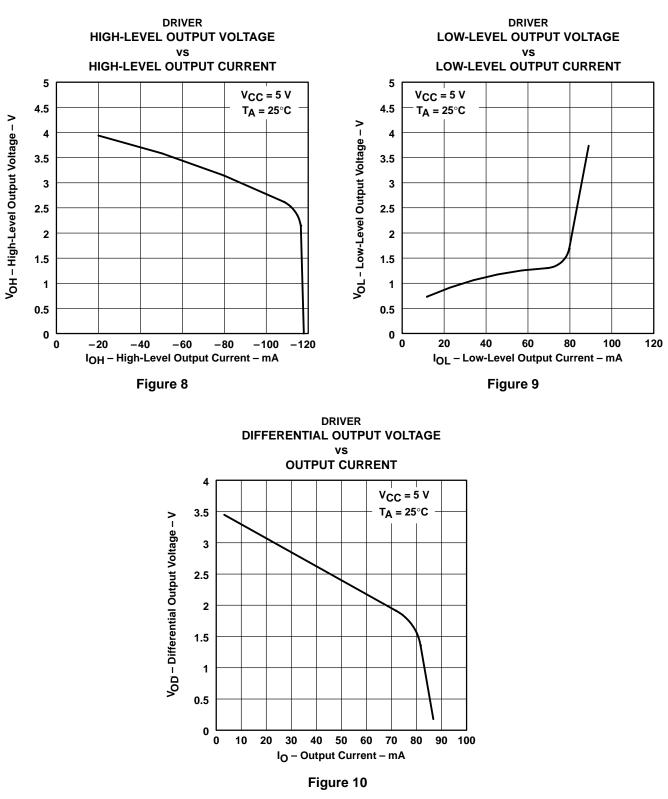

SLLS101A - JULY 1985 - REVISED MAY 1995



PARAMETER MEASUREMENT INFORMATION



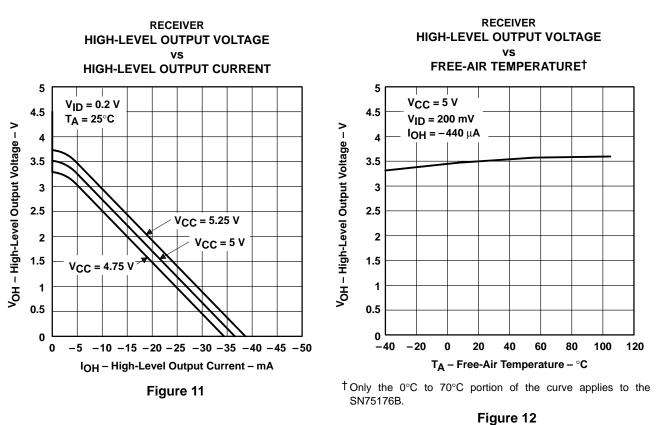
VOLTAGE WAVEFORMS



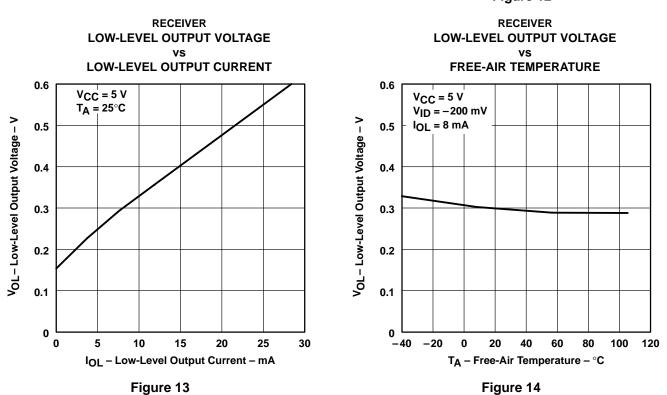



- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR  $\leq$  1 MHz, 50% duty cycle, t<sub>f</sub>  $\leq$  6 ns, t<sub>f</sub>  $\leq$  8 ns, t<sub>f</sub>
  - B. CL includes probe and jig capacitance.



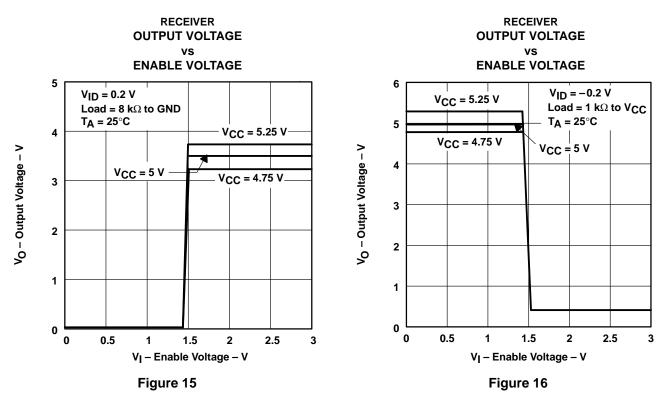

SLLS101A - JULY 1985 - REVISED MAY 1995




**TYPICAL CHARACTERISTICS** 



SLLS101A - JULY 1985 - REVISED MAY 1995




#### **TYPICAL CHARACTERISTICS**





SLLS101A - JULY 1985 - REVISED MAY 1995



#### **TYPICAL CHARACTERISTICS**



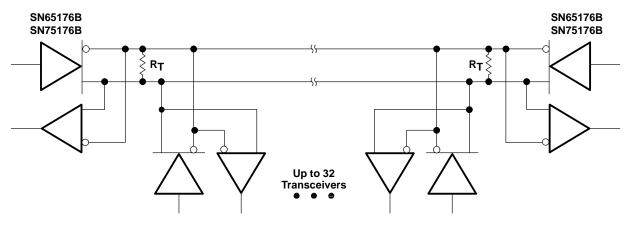



Figure 17. Typical Application Circuit

NOTE: The line should be terminated at both ends in its characteristic impedance (R<sub>T</sub> = Z<sub>O</sub>). Stub lengths off the main line should be kept as short as possible.



#### **IMPORTANT NOTICE**

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated