FISICA I

Licenciatura y Profesorado en Química y Licenciatura en Biotecnología

<u>TEMA 6</u>: Trabajo mecánico (W), energía cinética (K) y potencia (P). <u>Resultados de los ejercicios</u>

- Los ejercicios teóricos los resuelven como tema de estudio.
- <u>Definición del trabajo mecánico W realizado por fuerzas constantes.</u>
- 6.1) a) La fuerza **F** tiene módulo $|\mathbf{F}| = 215.28N$. b) La fuerza **F** hace un trabajo $W_F = -348.76 J$. c) El trabajo de la fuerza peso **P**, es $W_P = 417.23 J$. d) El trabajo de la fuerza de fricción f_r es $W_{fr} = -68.47 J$. e) El trabajo total de todas las fuerzas es $W_{total} = 0 J$.
- 6.2) a) La fuerza \mathbf{F} que hizo la persona tiene módulo $|\mathbf{F}| = 74.30~N$ y realiza un trabajo de $W_F = 601.13~J$. b) El trabajo de la fuerza de fricción f_r es $W_{fr} = -601.13~J$. c) Hay otras fuerzas sobre el bloque como la normal \mathbf{N} y la fuerza peso \mathbf{P} que son perpendiculares al desplazamiento y no realizan trabajo mecánico. d) El trabajo total de todas las fuerzas es $W_{total} = 0~J$.
- 6.3) a) El trabajo de la fuerza de tensión **T**, es $W_T = -365 J$. b) El trabajo de la fuerza peso **P**, es $W_P = 490 J$. c) El trabajo total de todas las fuerzas es $W_{total} = 125 J$.
 - Definición del trabajo mecánico W realizado por fuerzas variables.
- 6.4) a) El vector fuerza del resorte tiene sentido opuesto al versor \mathbf{i} y es $\mathbf{F}_{resorte} = F_x \, \mathbf{i}$, $(F_x = -kx < 0)$. b) La fuerza externa para mantenerlo estirado es $\mathbf{F}_{externa} = (48 \text{ N})\mathbf{i}$. c) La fuerza externa para mantenerlo comprimido es $\mathbf{F}_{externa} = (-64 \text{ N})\mathbf{i}$. d) El vector fuerza del resorte tiene el sentido del versor \mathbf{i} y es $\mathbf{F}_{resorte} = F_x \, \mathbf{i}$, $(F_x = -kx > 0)$. e) El trabajo de la fuerza del resorte es negativo: $W = -\frac{1}{2}kx^2 = -0.36 \, J$. f) El trabajo de la fuerza del resorte es negativo: $W = \frac{1}{2}kx^2 = -0.64 \, J$. g) El trabajo que realiza la fuerza de un resorte en presencia de una fuerza externa siempre es opuesto al trabajo de la fuerza externa la cual realiza un trabajo positivo.
- 6.5) a) El vector velocidad es $\mathbf{v} = d\mathbf{x}/dt = [(6 \, m/s^3)t^2]\mathbf{i}$, el vector aceleración es $\mathbf{a} = d\mathbf{v}/dt = [(12 \, m/s^3)t]\mathbf{i}$ y el vector fuerza es $\mathbf{F}(t) = [(6 \, kgm/s^3)t]\mathbf{i}$. b) El vector fuerza es $\mathbf{F} = F_x \mathbf{i}$, $(F_x > 0)$. Como la partícula se mueve en el eje x, el vector d $\mathbf{s} = d\mathbf{x} = \mathbf{v}dt = [(6 \, m/s^3)t^2] \, dt \, \mathbf{i}$, $(v_x > 0)$. Luego, el producto escalar es positivo, $\mathbf{F}.d\mathbf{s} = [(36 \, kgm^2/s^6)t^3]$ y el trabajo realizado es positivo. c) El trabajo que hace la fuerza $\mathbf{F}(t)$ es $W_F = 21465 \, J$.
 6.6) a) Por definición $\mathbf{F}.d\mathbf{s} = |\mathbf{F}| | d\mathbf{s} | cos\alpha = |\mathbf{F}| | L \cos\alpha \, d\alpha$. Como α varía entre 0^o y 45^o , el trabajo es positivo. b) La fuerza \mathbf{F} hace un trabajo $W_F = 10.61 \, J$. c) Por definición $\mathbf{P}.d\mathbf{s} = |\mathbf{P}| | d\mathbf{s} | cos(\alpha + 90^o) = |\mathbf{P}| L \cos(\alpha + 90^o) \, d\alpha$. Como α varía entre 0^o y 45^o , el trabajo es negativo. d) El trabajo de la fuerza peso \mathbf{P} es $W_P = -2.15 \, J$. e) El trabajo total de todas las fuerzas es $W_{total} = 8.45 \, J$.
 - Teorema del trabajo W y la variación de la energía cinética ∆K.
- 6.7) a) La piedra fue lanzada con una velocidad vertical hacia arriba de 29.89 m/s. b) Alcanza 46.89 m de altura máxima. c) Cuando cae y a 7.5 m de altura su velocidad es de 27.78 m/s. d) La piedra choca contra el suelo a una velocidad vertical hacia abajo de 30.32 m/s. Observe que como la piedra está más debajo de la altura de lanzamiento, su velocidad es mayor a la que tenía cuando sale hacia arriba.
- 6.8) a) Cuando se comprime, la fuerza que aplica el resorte hace un trabajo negativo igual a $W = -\frac{1}{2}k x_m^2$. Así $x_m = |\mathbf{x}_{m\acute{a}x}| = 0.42 \ m$. b) En la descompresión hasta la mitad de x_m el trabajo del resorte es positivo igual a $W = \frac{1}{2}k (x_m^2 x_m^2 / 4)$ y por lo tanto $v = 8.92 \ m/s$. c) En la descompresión total desde x_m , el trabajo del resorte es positivo $W = \frac{1}{2}k x_m^2$ y por lo tanto $v = 10.3 \ m/s$. d) Como la masa m se mueve hacia -x, $\mathbf{v} = (-8.92 \ m/s)\mathbf{i}$ en el primer caso y $\mathbf{v} = (-10.3 \ m/s)\mathbf{i}$ en el último caso.
- 6.9) a) El trabajo de la fuerza peso **P** es $W_P = 0.304 J$. b) El trabajo de la fuerza del resorte es $W_{resorte} = -1.754 J$. c) En el momento del choque con el resorte, el bloque tiene una velocidad de impacto $|\mathbf{v}_i| = 3.32 \ m/s$. d) La altura H desde donde se soltó la masa es $H = 0.56 \ m$. e) Si se duplicara esa velocidad el resorte se comprimiría $|\mathbf{y}_{máx}| = 0.225 \ m = 22.5 \ cm$.
- 6.10) a) La componente vertical de la velocidad inicial es $v_{0y} = 52.38 \text{ m/s}$. b) La componente horizontal de la velocidad inicial es $v_x = v_{0x} = 53.78 \text{ m/s}$. c) El desplazamiento es $\Delta y = -75.56 \text{ m}$ (por debajo del punto de lanzamiento).

- 6.11) a) La fuerza de empuje hace trabajo negativo y $\Delta K = -5.09 \times 10^7 J$. b) En este caso, la fuerza de empuje hace trabajo positivo y $\Delta K = 6.61 \times 10^7 J$. c) En este caso, solo cambia la componente y de la velocidad y así $\Delta K = 7.6 \times 10^6 J$.
- 6.12) a) El trabajo de la fuerza \mathbf{F} es $W_F = 532~J$, b) el trabajo de la fuerza peso \mathbf{P} es $W_P = -314.77~J$, c) el trabajo de la fuerza \mathbf{N} es $W_N = 0~J$, d) el trabajo de la fuerza f_K es $W_{fk} = -202.5~J$ y el trabajo total de todas las fuerzas $W_{total} = 14.73~J$. f) Después de recorrer 3.8 m, la velocidad tiene módulo $|\mathbf{v}| = 1.21~m/s$.

• Potencia P.

- 6.13) a) El trabajo mecánico del motor, es el realizado por la fuerza de tensión **T**: $W_{tensión} = 599843.5 J$. b) El tiempo que tarda en subir la pendiente es $\Delta t = 36.16 \text{ s. c}$) Por ambas fórmulas, la potencia es P = 16589.4 w. 6.14) a) Puede subir aproximadamente 28 pasajeros. En realidad puede subir una masa extra (aparte de la del
- 6.14) a) Puede subir aproximadamente 28 pasajeros. En realidad puede subir una masa extra (aparte de la del ascensor) de 1834.9 kg. b) La potencia aplicada (y consumida) es de 31.2 hp.
- 6.15) a) Aproximadamente N=84 cajas. b) Aproximadamente N=22 cajas. c) Como el tiempo empleado en los dos casos es de 60 s, cada caja debe cosumir un tiempo $\Delta t=60$ s/N. Luego en el caso a) la velocidad vertical debe ser $v_y=1.27$ m/s y en el caso b) $v_y=0.34$ m/s.

• Tarea Práctica Individual de Repaso.

- 6.1*) Los trabajos son: $W_F = 450 J$, $W_P = -400.42 J$, $W_{fr} = -0.77 J$ y $W_N = 0 J$. El trabajo total de todas las fuerzas aplicadas es $W_{total} = 48.81 J$.
- 6.2*) a) Como $d\mathbf{s} = d\mathbf{x} = dx\mathbf{i}$ con dx > 0 porque x es creciente, $\mathbf{F}.d\mathbf{s} = [30 \ N (2.5 \ N/m^2)x^2]dx$. b) La fuerza que Ud. aplica sobre el objeto hace un trabajo total $W_{total} = 0 \ J$. Ya que el objeto arranca con velocidad inicial igual a cero y $W = \Delta K$ la velocidad con que llega el objeto a la pared es igual a cero (se detiene). El hombre hizo durante un tramo trabajo positivo y una vez que el objeto se comenzó a mover tuvo que realizar trabajo negativo para detenerlo. (Analice en la expresión de la fuerza $\mathbf{F}(x)$ el sentido de la misma: desde $x_i = 0 \ m$ hasta $x_i \approx 3.46 \ m$, $F_x > 0$ y entre estos valores, el W > 0. Desde x_i hasta $x_i = 6 \ m$, cambia de sentido, $x_i = 0 \ m$ candidad esentido, $x_i = 0 \ m$ hasta $x_i = 0 \ m$.
- 6.3*) a) El módulo de la velocidad final del auto es $|\mathbf{v}_f| = 8.4 \text{ m/s} = 30.24 \text{ km/h}$ después que se consumiera 51 kJ de energía cinética. b) Hace falta consumir una cantidad de energía cinética extra $\Delta K = -38799.4 \text{ J} \approx -38.8 \text{ kJ}$. c) En este caso, $\Delta K = -89799.3 \text{ J} \approx -51 \text{ kJ} + (-38.8 \text{ kJ})$ o sea la suma delas dos maniobras anteriores. 6.4*) a) Si se triplica la velocidad se detiene en 212.58 m. b) Si se triplica f_r se detiene en 7.87 m.
- 6.5*) a) La potencia del motor para subir los 50 esquiadores a velocidad constante, es aproximadamente de $2.96 \times 10^4 \ w \approx 40 \ hp$. b) La potencia del motor para subir los 50 esquiadores con aceleración constante, es aproximadamente de $1.94 \times 10^5 \ w \approx 260 \ hp$.