FISICA I

Licenciatura y Profesorado en Química y Licenciatura en Biotecnología

TEMA 5: Leyes de Newton. Fuerzas de fricción y aplicaciones de la tercera ley.

Resultados de los ejercicios.

(Los vectores se simbolizan con letra negrita)

- Los ejercicios teóricos los resuelven como tema de estudio.
- Equilibrio estático (sin movimiento) entre fuerzas.
- 5.1) a) Las tensiones en los trozos de cuerdas son: $|\mathbf{T}_A| = 20.48 \text{ N}, |\mathbf{T}_B| = 25.13 \text{ N y} |\mathbf{T}_C| = 7.5 \text{ N}$. b) El mayor valor de tensión es la de la cuerda *B*. Luego $T_{B, maxima} = 55 \text{ N}$. Como $T_B = 3.35 w$, se obtiene w = 16.42 N.
- 5.2) a) En la cuerda, el valor de la tensión es de 470 N. b) El valor de la normal de 163 N. c) Si la longitud del hilo aumentara, disminuye su ángulo con la vertical y ambas fuerzas (T y N) decrecen.
- 5.3) a) Realizar esquema. b) El módulo de la tensión en la cuerda es $| \mathbf{T} | = 5459.9 \, N$. c) La superfície empuja al auto hacia arriba con la fuerza normal de módulo $| \mathbf{N} | = 7224.4 \, N$. d) El valor de la tensión seria menor porque en este caso la fuerza \mathbf{T} y no su componente horizontal equilibran a la componente horizontal de la fuerza peso. La otra fuerza que cambia su valor es la normal \mathbf{N} .
 - Fuerzas de fricción estática y cinética.
- 5.4) a) Note que el valor de la fuerza normal N es igual al peso P. Para módulo de \mathbf{F} entre $0 \le |\mathbf{F}| \le 75 \, N$ actúa la fuerza de fricción estática \mathbf{f}_S y para $|\mathbf{F}| > 75 \, N$ actúa la fuerza de fricción cinética \mathbf{f}_K que tiene el valor constante de $50 \, N$ y cumple que $|\mathbf{f}_K| < |\mathbf{f}_S|$. b) Cuando $|\mathbf{F}| = 75 \, N = \mu_S P$ y $\mu_S = 0.56$. Como $f_k = 50 \, N$, $\mu_K = 0.37$. c) Por definición, la fuerza de fricción estática se comporta de manera que $0 \le f_S \le \mu_S P$ donde el máximo valor es aquel inicia el movimiento del objeto. La fuerza de fricción cinética, siempre tiene el valor constante $\mu_K P$. d) Los valores de μ_S y μ_K son los mismos obtenidos anteriormente por ser una característica de las superficies en contacto. Luego, si P aumenta al doble del valor inicial, la línea inclinada crece desde cero hasta el valor de $150 \, N$ y luego se mantiene horizontal en el valor $100 \, N$.
- 5.5) a) La caja no se mueve porque $|\mathbf{f}_{S,max}| = 493.14 \ N > 412 \ N$. b) La fuerza vertical mínima tiene módulo $|\mathbf{F}_{vertical}| = 219.29 \ N$. c) La fuerza horizontal mínima tiene módulo $|\mathbf{F}_{horizontal}| = 81.14 \ N$.
- 5.6) a) $|\mathbf{F}_{min}| = 115.08 \, N$. b) $|\mathbf{F}_{min}| = 678.95 \, N$. c) La magnitud de la fuerza aplicada debe ser $|\mathbf{F}| = 98.83 \, N$ en el primer caso y $|\mathbf{F}| = 344.59 \, N$ en el segundo.
 - Plano inclinado con fricción.
- 5.7) a) La tensión de la cuerda que une B y C es $T_1 = 30.76$ N y la tensión de la cuerda entre A y B es $T_2 = 8.75$ N. b) El peso de C es $P_C = 30.76$ N. c) La aceleración es $|\mathbf{a}| = 1.54$ m/s^2 .
- 5.8) a) La aceleración de los bloques es $|\mathbf{a}| = 0.15 \text{ m/s}^2$. b) El valor de la tensión en la cuerda es $|\mathbf{T}| = 10.48 \text{ N}$.
- 5.9) a) El coeficiente de fricción cinética es $\mu_K = 0.45$. b) El módulo de la tensión es $|\mathbf{T}| = 14.12 \ N$.
 - Principio de acción y reacción.
- 5.10) a) La expresión para la magnitud de la fuerza \mathbf{F} es $F = \mu_K(3P_A + P_B) = 2.52 \, N$. b) La tensión es $T = 0.41 \, N$.
- 5.11) a) El módulo de **a** es 0.675 m/s². b) Se mantiene adherida porque $f_S = \mu_{1S} F_{contacto} = 185.9 N > mg = 156.8 N$.
- 5.12) a) Debe aplicar una fuerza de módulo $| \mathbf{F} | = 87.63 \ N$. b) El valor de la fuerza de fricción estática es $f_S = 146.06 \ N$ que es menor que $f_{S,max} = 222 \ N$. La dirección es paralela a la rampa y sentido hacia el hombre.
 - <u>Dinámica del movimiento circular: el peralte.</u>
- 5.13) a) Si N = 0 entonces v = 38.34 m/s = 138 km/h. b) En este caso, N = 3580 N y el peso aparente es aproximadamente 5 veces "más pesado" que en la Tierra.
- 5.14) a) El coeficiente de fricción mínimo es $\mu_S = 0.29$. b) La velocidad máxima es de 14.43 m/s = 51.96 km/h.

5.15) a) El ángulo β del peralte debe ser de 19.29° . No depende de la masa; por lo tanto podría ir a la misma velocidad. b) La normal sobre el auto es de 1.17×10^4 N y sobre la camioneta es de 2.34×10^4 N. Observe que son mayores que el peso de los móviles.

• Fuerzas dependientes del tiempo: fuerzas de arrastre o resistencia.

- 5.16) a) Tomando y positivo hacia arriba, $\sum F_y = ma_y \rightarrow -mg + Cv_y = -ma_y$. b) Si $a_y = 0$ cuando $|\mathbf{v}| = |\mathbf{v}_L|$ entonces $|\mathbf{v}_L| = mg/C$. c) C/m = 32.67 1/s. d) En t = 0 como $v_y = 0$ entonces $a_y = g$. e) Si $|\mathbf{v}_y| = 0.15$ m/s entonces $\mathbf{a}_y = (-4.9 \text{ m/s}^2)\mathbf{j}$.
- 5.17) Como la piedra cae en el líquido, vamos a tomar signo positivo hacia abajo. a) La aceleración inicial $a_0 = g$. b) Cuando $v_y = 3$ m/s la aceleración es $a_y = 6.21$ m/s². c) La velocidad $v_y = 7.38$ m/s cuando $a_y = 0.1a_0$. d) La velocidad límite es $v_L = 8.2$ m/s. e) Cuando el tiempo t = 1.93s, la velocidad es $v_y = 0.9$ v_L .
- 5.18) a) Los valores son $\mu_K = 0.015$ y D = 0.36 kg/m. b) La velocidad límite es de 37.03 m/s = 133.32 km/h.

• Tarea Práctica de Repaso.

- 5.1*) a) La fuerza de fricción estática que aplica la superficie es de módulo $|\mathbf{f}_S| = 138.04 \, N$. b) El peso máximo del bloque A es $|\mathbf{P}_{Amax}| = 154.73 \, N$.
- 5.2*) a) La fuerza horizontal mínima es $|\mathbf{F}_{min}| = 98.4 \text{ N}$. b) Se debe aplicar una fuerza de $|\mathbf{F}| = 76.8 \text{ N}$. c) El baúl se moveria con una aceleración de $|\mathbf{a}| = 0.88 \text{ m/s}^2$.
- 5.3*) a) La aceleración común de los objetos es $|\mathbf{a}| = 3.51 \text{ m/s}^2$. b) El valor de la tensión en la cuerda es $|\mathbf{T}| = 0.93 \text{ N}$. Si se conectan al revés, la cuerda no se tensa porque el cuerpo 2 tiene mayor aceleración que el cuerpo 1 debido a que los objetos tienen diferentes coeficientes de fricción con la superfície del plano inclinado.
- 5.4*) a) El módulo de **F** es de 16.91 N. b) El valor de la normal es $|\mathbf{N}| = 10.15 \text{ N}$. 5.5*) a) El coeficiente de fricción estática $\mu_S = \frac{v^2}{Rg} = 0.27$. b) Si gira a 60 rpm para que el botón se quede en su lugar debe ubicarse a una distancia menor a 6.8 cm del eje.
- 5.6*) La tensión del cable horizontal es de 7.75×10^3 N y para el cable inclinado la tensión es de 1.31×10^3 N.
- 5.7*) a) El coeficiente de proporcionalidad de la fuerza de arrastre es D = 0.44 kg/m. b) Si el niño alcanza la misma velocidad límite, su masa es m = 45 kg. Note que los coeficientes de la fuerza de arrastre en ambos paracaídas son diferentes. c) Para ambos, la expresión del módulo de la aceleración es $a = g (5.56 \times 10^{-3} \text{ m}^{-1})v^2$.