
Archery– Modeling and analysis of architectural patterns
A quick guide

Alejandro Sanchez

April 24, 2012

Contents
1 Introduction 1

2 Syntax 2
2.1 Patterns and elements . 2
2.2 Instances . 4

3 Analysis 5
3.1 Translation . 5
3.2 Relations . 5

4 Tool support 5
4.1 Translating to mCRL2 . 5

4.1.1 Distribution . 5
4.1.2 Command line . 6

4.2 Generating a Linear Process Specification . 6
4.3 Simulating a specification . 6
4.4 Generating a Labelled Transition System . 7
4.5 Visualising the Labelled Transition System . 7
4.6 Proving equivalence and refinement relations . 7

5 Examples 7
5.1 A single server . 7
5.2 A server and two clients . 8
5.3 A paid server . 9
5.4 A buggy server . 10
5.5 A fault tolerant server . 10
5.6 A composite server . 11

1 Introduction
In a number of contexts the term architectural pattern is used as an architectural abstraction. The expression
is taken in the usual sense in classical software architecture – a known solution to a recurring design prob-
lem. In [4] it is characterised as a description of element and configuration types, and a set of constraints on
how to use them. Catalogs [5, 11], provide a vocabulary for their use at a high abstraction level. However,
the lack of formality in their documentation prevents developing precise architectural specifications on top
of them, and in consequence, any tool-supported analysis and verification.

Such is the motivation behind Archery [10, 9], a language for precise modelling and analysis of archi-
tectural patterns. The language is structured as a core that allows to specify the configuration and behaviour

1

of software architectures in terms of architectural patterns, and extensions, currently under development,
to support (re)configuration operations and pattern constraints. A pattern specification in the language
comprises a set of architectural elements (connectors and components) and their associated behaviours and
interfaces (set of ports). An element’s behaviour is a sequential process that each instance of such element
obeys. Its interface is the set of actions that also represent interactions with other instances. An architecture
describes a particular configuration that instances of a pattern’s elements assume as a set of attachments
among their ports and the setting of externally visible ports. It has an emergent behaviour and can be re-
garded as an instance of the pattern. Then, both patterns and elements act as types of behaviour expected
from instances. Instances are kept and referenced through variables that have a type. The language supports
hierarchical composition of architectural patterns, allowing the definition of configurations by indifferently
attaching ports of pattern or element instances.

The behavioural semantics of Archery are given by translation to a process algebra – mCRL2 [7, 6].
Process algebra [8, 3], broadly defined as the study of the behaviour of parallel or distributed systems by
algebraic means [2], provides a suitable conceptual framework not only to describe software architectures,
but also to reason about them either equationally (on top of well studied notions of behavioural equiv-
alence), or through formulation and verification of behavioural requirements expressed in an associated
modal logic. Moreover, Process Algebra supports compositional reasoning and abstraction with respect
to internal activity of services or components a system is composed of. In particular, mCRL2 a process
algebra, incorporating data and time information, with a number of features which turn it suitable for flex-
ible modelling of behaviour. For example, the introduction of multi-actions enables the specification of
(not necessarily related) actions that are to be executed together. Most process algebras only allow a single
action to be executed atomically thus forcing an order on the execution of actions. They also allow the
separation of parallelism and communication: a multiaction simply represents the simultaneous execution
of a set of actions, action synchronisation being specified separately.

In this guide we describe how to write Archery specifications and how to carry out their analysis. The
language defines relations among specification that can be proved with the mCRL2 tool-set. The tools also
allow animating and visualising the specifications.

2 Syntax

2.1 Patterns and elements
An Archery model comprises global data specifications, one or more patterns and a main architecture
(Figure 1). Global data specifications follow the mCRL2 syntax. We include in Figure 2 part of such
syntax in order to express Archery’s. However, we do not aim to replicate the extensive documentation
describing it and available, for instance, in the toolset website1.

Spec ::= DataSpecs Pat+ Var

Figure 1: Archery Specification

Domain ::= SortExpr (# SortExpr)*
DataExprs ::= DataExpr (, DataExpr)*
IdDecl ::= ID : SortExpr
IdsDecl ::= Ids : SortExpr
Ids ::= ID(, ID)*

Figure 2: Data Specifications

A pattern (see Figure 3 for the syntactic structure) has a unique identifier and includes an optional list
of formal parameters, and one or more architectural elements. Two example patterns (ClientServer

1http:\\www.mcrl.org

2

and PipeFilter) are shown in Listing 1. The list of formal parameters responds to the mCRL2 syntax
for declaring identifiers: a list of identifiers ending with a colon, followed by a sort expression.

Pat ::= pattern TYPEID (IdsDecl?) Elem+ end
Elem ::= element TYPEID (IdsDecl?) Behaviour ElemInterface
Behaviour ::= ActSpec ProcSpec
ActSpec ::= act ActDecl+
ActDecl ::= Ids (: Domain)?;
ProcSpec ::= proc MainProcDecl ProcDecl*
MainProcDecl ::= ID(MainProcPar? (, MainProcPar)*) = ArProcExpr
MainProcPar ::= IdDecl = InitValue
ProcDecl ::= ID(IdsDecl? (, IdsDecl)*) = ArProcExpr
ArProcExpr ::= ID

| ID(DataExprs)
| DELTA
| TAU
| (ArProcExpr)
| ArProcExpr . ArProcExpr
| DataExpr −> ArProcExpr (<> ArProcExpr)?
| ArProcExpr + ArProcExpr

ElemInterface ::= interface Port+
Port ::= (in | out) Ids ;

Figure 3: Archery pattern

Each architectural element in a pattern is described by an identifier, an optional list of formal param-
eters, a description of its behaviour and an interface. The former consists of a list of actions and a list
of process expressions whose head is the pattern’s initial behaviour. Behaviour is specified in a slightly
modified subset of mCRL2. An example list of action definitions and a process expression are respectively
shown in lines 3 and 4 of Listing 1.

The interface, on the other hand, contains one or more ports. Each port is defined by a direction, either
in or out, and a token that must match an action name in the list of action definitions. For instance, the
interface of Client defines two ports in line 5. Archery adopts a water flow metaphor inspired in [1]
for ports: an in port receives input from any port connected to it, and an out port sends output to all
ports connected to it. Ports are synchronous: actually a suitable process algebra expression can be used to
emulate any other port behaviour.

Listing 1: Patterns – Client-Server and Pipes and Filters
1 pattern ClientServer()
2 element Server()
3 act rreq, sres, cres;
4 proc Server() = rreq.cres.sres.Server();
5 interface in rreq; out sres;
6 element Client()
7 act prcs, sreq, rres;
8 proc Client() = prcs.sreq.rres.Client();
9 interface in rres; out sreq;

10 end
11 pattern PipeFilter()
12 element Pipe()
13 act accept, forward;
14 proc Pipe() = accept.forward.Pipe();
15 interface in accept; out forward;
16 element Filter()
17 act rec, trans, send;
18 proc Filter() = rec.trans.send.Filter();
19 interface in rec; out send;
20 end

3

2.2 Instances
A variable has an identifier and a type that must match an element or pattern name (figure 4). Allowed
values are, of course, instances of elements or patterns.

Var ::= ID : TYPEID = Inst ;
Inst ::= (ElemInst | PatInst)
ElemInst ::= TYPEID (DataExprs?)
PatInst ::= architecture TYPEID (DataExprs?) ArchBody end
ArchBody ::= Instances Attachments? ArchInterface?
Instances ::= instances Var+
Attachments ::= attachments Att+
Att ::= from PortRef to PortRef ;
ArchInterface ::= interface Ren+
Ren ::= PortRef as ID ;
PortRef ::= ID.ID

Figure 4: Archery instance

An architecture defines a set of variables and describes the configuration adopted by their instances. It
contains a token that must match a pattern name; an optional list of actual arguments; a set of variables; an
optional set of attachments; and an optional interface. The actual arguments must match in type and order
those of the pattern acting as its type. Each variable in the set must have as type an element defined in the
pattern the architecture is an instance of. As an example, a nested architecture is defined between lines 3
and 14 of the example.

Each attachment includes a port reference to an out port, and another one to an in port. A port
reference is an ordered pair of identifiers the first one matching a variable identifier, and the second a port
of the variable’s instance. Then, an attachment indicates which out port communicates with which in
port — see e.g. f1.send with p1.accept in line 9.

The architecture interface is a set of one or more port renamings. Each port renaming contains a port
reference and a token with the external name of the port. Ports not included in this set are not visible from
the outside. Including the same port in an attachment and the interface is incorrect. An example interface
with two renamings is shown between lines 12 and 13.

Listing 2: An example architecture
1 cs : ClientServer = architecture ClientServer()
2 instances
3 s : Server = architecture PipeFilter()
4 instances
5 f1 : Filter = Filter();
6 f2 : Filter = Filter();
7 p1 : Pipe = Pipe();
8 attachments
9 from f1.send to p1.accept;

10 from p1.forward to f2.rec;
11 interface
12 f1.rec as rreq;
13 f2.send as sres;
14 end
15 c1 : Client = Client();
16 c2 : Client = Client();
17 attachments
18 from c1.sreq to s.rreq;
19 from c2.sreq to s.rreq;
20 from s.sres to c1.rres;
21 from s.sres to c2.rres;
22 end

4

3 Analysis

3.1 Translation
Function T describes the translation of a pattern instance referenced by a variable. The result depends on
whether interleave semantics are used or not, and whether it is intended for animating a specification or
whether for comparing two. Clause (1) considers the former condition, and clause (2) considers the latter.

Tinterleave(V ar) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ρR(∇A(ΓC(∏
j ∈ Instances

Tinterleave(V arj)))) ⇐ interleave = true

ρR(∂B(ΓC(∏
j ∈ Instances

Tinterleave(V arj)))) ⇐ otherwise
(1)

Thide,interleave(V ar) = {
τH(Tinterleave(V ar)) ⇐ hide = true

Tinterleave(V ar) ⇐ otherwise
(2)

Clause (1) combines mCRL2 operators ρ, either ∇ or ∂ , and Γ, nested in that order. The communica-
tion operator Γ takes C as the set of communication rules and the parallel combination of the translation T
of each variable V arj in the architecture. Each rule cr in C is generated from each attachment in Attach-
ments. The allow operator ∇ is used for interleave semantics. It takes the set A of action ids as parameter
to allow only those in the set and restrict any other. Set A is computed as the union of the set of action
identifiers obtained for each instance j in Instances, and the synchronisation actions in each cr of C. The
block operator ∂, taking as parameter the set B of action ids, is used to enforce communications and to rule
out undesired actions occuring independently. Set B contains the generated action ids to represent port’s
behaviour. The rename operator ρ is applied then with the set R of renamings. The calculation of the set
R of rename rules is a little more tricky. For each Ren in ArchInterface seek the set prs of attached port
references in the upper level. Then, for each pr in prs generate a rename rule rr.

Clause (2) shows the translation for comparing specifications. It surrounds clause (1) with the hiding
operator τ . The argument, set H , contains the actions of element instances and the ids of synchronisation
actions in C.

Element instances are translated as sequential processes by processing the behaviour defined in the
element with respect to the instance information. The resulting process expression renames actions and
replaces ports with suitable process expressions that reflects their behaviour.

3.2 Relations
Architectural models in Archery can be compared through the behavioural equivalences and preorders
defined in mCRL2. Actually, rooted branching bisimilarity, ≈RB , provides a basis for establishing archi-
tectural interchangeability with respect to interface behaviour. Branching bisimilarity [3] relates behaviours
differing in the amount of internal activity but exhibiting similar branching structure. Rooted branching
bisimilarity adds a rootedness condition: initial internal transitions are never inert. Formally,

a ≡ b⇔ T (a) ≈RB T (b) (3)

a ⊑ b⇔ T (a) ⊑RB T (b) (4)

Coarser relationships are sometimes necessary to compare Archery models. Weak trace equivalence,
≈WT , and refinement, which abstract from the internal branching structure, are used to define the architec-
tural relations ≡WT and ⊑WT , respectively.

4 Tool support

4.1 Translating to mCRL2
4.1.1 Distribution

The translator is distributed in a compressed file with the contents as follows:

5

• translator.jar – a java implementation of the translator Archery to mCRL2
• translator.sh – a shell script for invoking the translator on Linux platforms
• README.txt
• examples – a folder with the example specifications in Section 5
• translate-examples.sh – a shell script to translate some of the examples

4.1.2 Command line

On Linux platforms the translator can be invoked with translator.sh according to the format in line
1. On other platforms it can be executed with the command on line 2
1 translate.sh [OPTIONS] [filename]
2 java -jar translator.jar [OPTIONS] [filename]

The translator supports a few options, each indicated in the command line by a leading double dash.
The options are:

• help – text explaining format and options
• version – translator’s version
• compare – (default) translation for comparing specifications
• simulate – translation for analysing a single specification
• interleave – (default) translated according to interleave semantics
• non-interleave – (default) translated allowing actions simultaneity

Example invocations you can find in file translate-examples.sh are shown below.
1 ./translator.sh --simulate --non-interleave examples/base.archery
2 ./translator.sh --compare examples/base.archery
3 ./translator.sh --simulate --interleave examples/buggy.archery
4 ./translator.sh examples/buggy.archery

The translation generates a file with extension mcrl that can be used for the analysis supported by the
mCRL2 tool-set.

4.2 Generating a Linear Process Specification
In order to carry out any analysis we first need to create a Linear Process Specification (LPS) from the
generated mcrl file. This is carried out with the mcrl2lps command according to the example that
follows.

1 mcrl22lps --lin-method=stack --rewriter=jitty --delta --no-constelm --no-deltaelm --
no-sumelm --verbose file.mcrl2 file.mcrl2.lps

Note that this process can take long, in particular if non interleave semantics are indicated when the mCRL2
file is generated by the translator (see Section 4.1.2).

A detailed description of the options can be found on mCRL2 website 2.

4.3 Simulating a specification
A specification can be animated with the command lpsxsim. The tool requires an LPS version of the
original specification, which is preferably translated to mCRL2 with the simulate option (see Section
4.1.2). The command can be invoked as follows.
1 lpsxsim file.mcrl2.lps

A detailed description of the options can be found at the mCRL2 website 3 and a screen capture is
shown in Section 5.2.

2http://www.mcrl2.org/release/user_manual/tools/mcrl22lps.html
3http://www.mcrl2.org/release/user_manual/tools/lpsxsim.html

6

4.4 Generating a Labelled Transition System
Some analysis can only be performed if the corresponding Labelled Transition System (LTS) is generated.
This can be done with lps2lts command according to the example that follows.
1 lps2lts --rewriter=jitty --state-format=tree --strategy=breadth --verbose file.mcrl2.

lps file.con.mcrl2.lts

An explanation of the command is available at the mCRL2 website 4.

4.5 Visualising the Labelled Transition System
The corresponding LTS of an specification can be visualised with the ltsgraph tool. It is recommended
to use an mCRL2 file generated with the simulate option (see Section 4.1.2). The visualisation can be
started with a command similar to the one below.

1 ltsgraph file.mcrl.lts

A detailed description of the command can be found in the mCRL2 website 5.

4.6 Proving equivalence and refinement relations
Equivalence and refinement relations, as described in Section 3.2, can be proved with the ltscompare
tool. The example commands ending in lines 2, 4 and 6 respectively illustrate how to prove spec1 ≡ spec2,
spec1 ≡WT spec2 and spec1 ⊑WT spec2. The current version of the tool does no support proving spec1 ⊑
spec2.

1 ltscompare --equivalence=branching-bisim --counter-example --verbose
2 spec1.mcrl.lts spec2.mcrl.lts
3 ltscompare --equivalence=weak-trace --counter-example --verbose
4 spec1.mcrl.lts spec2.mcrl.lts
5 ltscompare --preorder=weak-trace --verbose
6 spec1.mcrl.lts spec2.mcrl.lts

In the case of proving equivalence, the rootedness condition needs to be manually verified after branch-
ing bisimilarity is proved.

5 Examples
The Client-Server pattern prescribes configurations arranged by instances of two main element types: client
and server. The main design principle of the pattern is that clients can only connect to servers and vice-
verse. An element type for connectors is also part of the pattern, but we omit for simplicity in our example
characterisations.

5.1 A single server
Listing 3 shows a Client-Server pattern characterisation and an instance of the server. The server receives
a request rreq, computes a response cres, sends the response back sres and iterates Do(). We will
refer to this configuration as simple in the sequel.

Listing 3: A single server
1 pattern ClientServer()
2 element Server()
3 act rreq, sres, cres;
4 proc Do() = rreq.cres.sres.Do();
5 interface in rreq; out sres;
6 element Client()

4http://www.mcrl2.org/release/user_manual/tools/lps2lts.html
5http://www.mcrl2.org/release/user_manual/tools/ltsgraph.html

7

7 act prcs, sreq, rres;
8 proc Do() = prcs.sreq.rres.Do();
9 interface in rres; out sreq;

10 end
11 s : Server = Server();

The LTS for the specification can be visualised with the ltsgraph tool. The visualisation for this
example is shown in Figure 5. It requires translating the specification to mCRL2 for simulation (Section
4.1.2), generating the LPS (Section 4.2), and then the LTS (Section 4.4). Note that the ids for the action
and the unconnected ports combine the action id with the instance id.

Figure 5: Server LTS

5.2 A server and two clients
An architecture consisting of two clients connected to a server is shown in Listing 4. In the sequel, we will
refer to this configuration as base.

Listing 4: Base - a server and two clients
1 pattern ClientServer()
2 element Server()
3 act rreq, sres, cres;
4 proc Do() = rreq.cres.sres.Do();
5 interface in rreq; out sres;
6 element Client()
7 act prcs, sreq, rres;
8 proc Do() = prcs.sreq.rres.Do();
9 interface in rres; out sreq;

10 end
11 base : ClientServer = architecture ClientServer()
12 instances
13 c1 : Client = Client(); c2 : Client = Client();
14 s : Server = Server();
15 attachments
16 from c1.sreq to s.rreq; from c2.sreq to s.rreq;
17 from s.sres to c1.rres; from s.sres to c2.rres;

8

18 end;

The configuration can be animated as it is shown in Figure 6. It shows the two possible transitions at
the beginning of the behaviour: prcs_c1 and prcs_c1. The user can select which one to execute.

Figure 6: A server and two clients - Simulation

The LTS for the configuration, generated upon a translation using interleave semantics, is shown in
Figure 7. Note the labels generated by the translator. We describe the ones for transitions leaving and
reaching state 0. The former ones, prcs_c1 and prcs_c2, represent the respective first actions in the
behaviour of instances c1 and c2. The latter ones, synch_sres_s_rres_c1 and synch_sres_-
s_rres_c2, represent the respective interactions among the server instance and the two clients instances
receiving the response from the server.

0

1

2

3

4

5

6

78

9

10

11

prcs_c1

prcs_c2

synch_sreq_c1_rreq_s

prcs_c2

synch_sreq_c2_rreq_s

prcs_c1

cres_s

prcs_c2

synch_sreq_c2_rreq_s synch_sreq_c1_rreq_s

cres_s

prcs_c1

synch_sres_s_rres_c1

prcs_c2

cres_s

cres_s

synch_sres_s_rres_c2

prcs_c1

synch_sres_s_rres_c1

synch_sres_s_rres_c2

Figure 7: A server and two clients - LTS

5.3 A paid server
A pattern in which the server calculates a price for responding some request is shown in Listing 5. The
behaviour of the server changes, as it adds in a non-deterministic way an extra action after cres that

9

represents the calculation of the price. In the sequel, we will refer to this configuration as paid.

Listing 5: A paid server
1 pattern ClientPaidServer()
2 element PaidServer()
3 act rreq, sres, cres, cpri;
4 proc Do() = rreq.(tau.cres.cpri + tau.cres).sres.Do();
5 interface in rreq; out sres;
6 element Client()
7 act prcs, sreq, rres;
8 proc Do() = prcs.sreq.rres.Do();
9 interface in rres; out sreq;

10 end
11 s : PaidServer = PaidServer();

We can compare configurations simple and paid and establish if whether they are interchangeable or
not. Using the tool as described in Section 4.6 we prove simple ≡ paid.

5.4 A buggy server
We characterise a Client-Server pattern in which the server may stop working in a non-deterministic way
as it is shown in Listing 6. We will refer to this configuration as buggy in the sequel.

Listing 6: A buggy server
1 pattern ClientServer()
2 element BuggyServer()
3 act rreq, sres, cres;
4 proc Server() = rreq.(tau.delta + tau.cres).sres.Server();
5 interface in rreq; out sres;
6 element Client()
7 act prcs, sreq, rres;
8 proc Client() = prcs.sreq.rres.Client();
9 interface in rres; out sreq;

10 end
11 s : BuggyServer = BuggyServer();

We can study how configuration buggy relates to simple using the comparison tool. We prove that
buggy /≡ simple, but we do have that buggy ≡WT simple.

5.5 A fault tolerant server
Assume that the server can detect errors, and inform the client that the processing of the request has
failed (see 7). This is represented by adding a parameter that includes a boolean value to the actions
for exchanging the response. We refer to this configuration as tolerant

Listing 7: A fault tolerant server
1 sort
2 Data;
3 Comm = struct msg(success:Bool,data:Data);
4 cons d, e: Data;
5 pattern ClientFaultTolerantServer()
6 element FaultTolerantServer()
7 act rreq, cres; sres: Comm;
8 proc Do() = rreq.cres.(tau.sres(msg(false,d)) + tau.sres(msg(true,e))).Do();
9 interface in rreq; out sres;

10 element Client()
11 act prcs, sreq; rres:Comm;
12 proc Do() = prcs.sreq.rres(res).Do();
13 interface in rres; out sreq;
14 end
15 s : FaultTolerantServer = FaultTolerantServer();

10

We observe that none of the relations is valid: simple /≡ tolerant, simple /≡WT tolerant, and
simple /⊑WT tolerant. This is because the language generated by the actions of the interface has changed;
they have a parameter in tolerant not present in simple.

5.6 A composite server
It is possible to hierarchically combine patterns. The internal structure of a server can be defined in terms
of pattern Pipe and Filter (see Listing 8). We refer to this configuration as composite.

Listing 8: A composite server
1 pattern ClientServer()
2 element Server()
3 act rreq, sres, cres;
4 proc Server() = rreq.cres.sres.Server();
5 interface in rreq; out sres;
6 element Client()
7 act prcs, sreq, rres;
8 proc Client() = prcs.sreq.rres.Client();
9 interface in rres; out sreq;

10 end
11 pattern PipeFilter()
12 element Pipe()
13 act accept, forward;
14 proc Pipe() = accept.forward.Pipe();
15 interface in accept; out forward;
16 element Filter()
17 act rec, trans, send;
18 proc Filter() = rec.trans.send.Filter();
19 interface in rec; out send;
20 end
21 s : Server = architecture PipeFilter()
22 instances
23 f1 : Filter = Filter(); f2 : Filter = Filter();
24 p1 : Pipe = Pipe();
25 attachments
26 from f1.send to p1.accept; from p1.forward to f2.rec;
27 interface
28 f1.rec as rreq; f2.send as sres;
29 end

Configuration composite is not equivalent, nor weak trace equivalent to simple, i.e., composite /≡
simple and composite /≡WT simple. However, it is possible to check that simple ⊑WT composite.

References
[1] F. Arbab. Reo: a channel-based coordination model for component composition. Mathematical

Structures in Computer Science, 14(3):329–366, June 2004.

[2] J. Baeten. A brief history of process algebra. Theoretical Computer Science, 335(2/3):131–146, 2005.

[3] J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra: Equational Theories of Communi-
cating Processes. Cambridge University Press, 2010.

[4] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice (2nd Edition). Addison-
Wesley Professional, second edition, Apr. 2003.

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture Volume 1: A System of Patterns. Wiley, 1 edition, Aug. 1996.

[6] J. F. Groote, J. Keiren, A. Mathijssen, B. Ploeger, F. Stappers, C. Tankink, Y. Usenko, M. Weerden-
burg, W. Wesselink, T. Willemse, and J. Wulp. The mcrl2 toolset. In Proc. International Workshop
on Advanced Software Development Tools and Techniques (WASDeTT 2008), 2008.

11

[7] J. F. Groote, A. Mathijssen, M. Reniers, Y. Usenko, and M. van Weerdenburg. The formal speci-
fication language mCRL2. In Methods for Modelling Software Systems: Dagstuhl Seminar 06351,
2007.

[8] R. Milner. Communication and Concurrency. Series in Computer Science. Prentice Hall, 1989.

[9] A. Sanchez, L. S. Barbosa, and D. Riesco. Bigraphical modelling of architectural patterns (to appear).
In Post-proceedings of the 8th International Symposium on Formal Aspects of Component Software,
FACS 2011. Springer, 2011.

[10] A. Sanchez, L. S. Barbosa, and D. Riesco. A language for behavioural modelling of architectural
patterns. In Proceedings of the Third Workshop on Behavioural Modelling, BM-FA ’11, pages 17–24,
New York, NY, USA, 2011. ACM.

[11] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline. Prentice
Hall, Apr. 1996.

12

